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Abstract. The motivation of this work is to search for an elementary common physical
mechanism for the non-exponential decay observed in a large number of disparate phenocmena,
Probably the most elementary assumption is an initial Poissonian distribution of activation
energies £ with each fraction decaying independently according o an Arrhenius rate r{£) ~
exp(—E/T). Despite this drastic oversimplification, this elementary model will account for a
large variety of observed shapes of decay, ranging from nearly exponential to power law and
nearly logarithmic functions. The fundamental feature that governs the shape is the ratio £/T,
denated 1/&, of the mean £ at temperature T. Analysing limited experimental data sets is also
easy due to the closed form of the resulting normalized decay curves gi{b, 1) = b2y (b, 1),
where 7 = rpt is the time ¢ normalized by the rate rg. The incomplete gamma function
¥ (b, T) = J5 sP~"e 5 ds is an important correction of the power law 77,

In an alternative interpretation, this decay form g(b, ¥) could also be considered as generated
by a b-dependent form of an effective barrier energy U.g(g) increasing as a function of the
decaying normalized observable g.

In this paper the forms g(b, t) and U.g(g) are evaluated, displayed and compared with
existing models, In a separate paper the widespread applicability of the form g(b, t) will
be demonstrated by interpreting various types of measured data using individual established
temperature dependencies and by treating the ‘ageing’ or ‘'memory’ effect.

1. Introduction

1.1. Measured decay in disordered materials

Non-exponential thermal relaxation of a nop-equilibrium macroscopic observable X (¢) [1-
9] is a widespread phenomenon in materials exhibiting some kind of disorder. Although
the microscopic effects are very different and dependent upon the type of material, it is
an intriguing fact that the decay curves are quite similar, and include decays close to
exponential, power or logarithmic laws. Explaining the microscopic-scale physics [10-24]
responsible for these experimental decay functions is a very complex task. Although there
are some similarities, these theories have to treat in detail the specific effects for each
material.

1.2. Generalizing models: the problem of temperature dependence

It is the aim of this paper to find a generalized model for non-exponential decay based on

elementary physics.
At first glance, the temperature dependence should be part of every decay model.
However, the temperature variation of non-exponential decay is different for granular
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superconductors, for metallic spin glasses, for the magnetic after-effect in alloys, and for
the plastic elongation of a stretched copper wire.

In order to separate general from individual behaviour, a two-step procedure has been
used. In a first step, generalized models interpret only single decay curves measured at
a fixed temperature. In a second step, the individuality of the specific material will be
considered. Already established temperature dependencies are incorporated for the specific
material under investigation.

1.3, Early models using generating functions

In principle, non-exponential decay functions x{f) are uniquely defined by two
complementary generating functions: (1) a single effective rate reg(x) varying with the
decaying observable x, and (ii) an initial distribution ao(r) of relaxation rates » with each
fraction decaying exponentially with constant rate r.

As long ago as 1937 Richter [23] introduced a broad distribution of relaxation rates. The
resulting decay function is then a superposition of independent retaxations of the Amhenius
type. In order to enable a closed form for the resulting decay, he approximated the broad
distribution by a box-type distribution. This model was applied to non-exponential decay
of the magnetic after-effect.

In 1947 Kuhlmann [26] mentioned that the complementary method (i) of a single
generating effective rate could also be used to describe non-exponential decay.

In 1948 Smith [27] explained the plastic elongation of stretched metals by assuming
a flat distribution of activation energies. The resulting nearly logarithmic decay is again
expressed in a closed form.

In 1983, Bourrous and Kronmiiller [28] found a barrier distribution by fitting
experimental data. For practical reasons, the number of fitting parameters (in principle
infinite) was reduced by assuming an asymmetric Gaussian distribution. This model was
applied to the magnetic after-effect in an amorphous alloy.

In 1989 Hagen and Griessen [13] assumed a distribution m(E*) of energy E* for the
pinning barriers in high-T; superconductors. At that time, only the nearly logarithmic
long-time fraction of the decay was well registered, which made it difficult to directly
determine the distribution m(E*) from a measurement at fixed T, Instead, these authors
used an established temperature dependence for E(T) together with the full temperature
dependence of the decay at long times and found by an inversion scheme the distribution
m(E*).

In 1993 Theuss [29] compared, for the same data of layered type-II superconductors, the
inversion scheme of Hagen and Griessen [13] with the modified method of Bourrous and
Kronmiiller [28]. The distribution is approximated by many box-type distributions, using
the integral evaluated by Richter [25] for each box. In addition, the data at four different
temperatures were combined for the determination of one distribution.

1.4. Proposing an elementary initial distribution

Although the papers described in the previous section show that non-exponential decay
can be related to an underlying distribution function, there are two problems. First, the
evaluation of this function for limited experimental data is difficult due to the, in principle
infinite, number of fitting parameters. Second, the distribution found by inversion is a
very helpful type of presentation of the observed data rather than their interpretation or
explanation. Therefore, it is advisable to expand the generating method from the formal
box-type of Richter [25] to distributions based on elementary stochastic arguments in order
to suggest an explaration of the data,
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The simplest approach of a Poissonian distribution was able to interpret a large number
of decay data with only a small number of fitting parameters. Only in the cases of bad
fits is the distribution modified, again using a physical argument that the low-energy part
has already decayed at the ‘injtial’ time of the decay. Such distributions coincide with the
results of Hagen and Griessen [13] found by inversion. Such an ‘eclementary decay model’
(EDM) was sketched [30] in 1991 and will be presented here in maore detail.

The decay functions of the EbM will then be compared with predictions [10-23] of other
models and with a Monte Carlo simulation [11] of the Sherrington—-Kirkpatrick model,

In the following paper, the EDM will be applied to various experiments. An important
application is the description of the ‘ageing’ or ‘memory’ effect. A discussion will show
that the ageing effect is a consequence of specific decay curves, and not directly related to
spin glass behaviour.

2. Introducing the ‘elementary decay model’ (EDM)

2.1. Generalizing thermal activation

It seems sufficient to consider only the decay after a sudden change of an external parameter
since the response to a continuous change has been described elsewhere [30].

Suppose the non-equilibrium observable X (#) starts after a step of an external parameter
occurring at ¢ = O with the initial value Xy. Describing by X (z) only the non-equilibrium
part, X{) will decay to zero. Thus the normalized decay function x{r) = X(¢}/ X starts
at one and decays to zero.

The main common feature of the decay in the large variety of disordered materials
is that the decay X(r) at a fixed temperature T is caused by thermal activation of
energy E. The basic assumption is, therefore, an Arrhenius type of the decay rate
r(E" = —(1/X)dX/dt = —(1/x)dx/dt proportional to exp(—E’) where E' = E/T 1s
the normalized activation energy. Three possible interpretations of non-exponential decay
will be considered.

(i) The energy E’ is assumed to change during the process of relaxation, to be described
by E'(t) or, implicitly, by an effective activation energy Ul;(x) as a function of the
normalized decaying observable x, with reg(x) o exp{—U;g) (x)}f . This description implies
a uniform behaviour over the sample.

Although the transform x(t) — reg(x) is straightforward, the inverse transform
reit — £{x)} = x(z) cannot always be performed in closed form.

(ii) A non-uniform behaviour would result in a distribution f(E’) of energies E' = E/T.
If these energies E" are constant during the process of relaxation, the superposition of the
resulting exponential decay functions would already yield non-exponential decay functions,
without the need to assume that these energies are of the changing Uli(x) type, as
demonstrated by various authors [13,25,27-29], and also discussed by Palmer and co-
workers [31]. In the limit of a continuous rate r = ry exp{—E") with the maximal value rqy
for E/ = 0} the decay x () is expressed as [31]

1
x{ay, T) :l[ ag{F) exp(—Fr) dF (1
0

f Note that some microscopic models [11, 15-20] relate rather the normalized slope s.p(x) = —dx/fdr =
—{1/Xp) dX/dr instead of the rate rege(x) = (1/x) Sefr(x) to a thermally activated normalized energy Ul = Uet/ T
by assuming seg{x) o exp[— U:g) (x)] instead of the previous ref(x) o exp[-Ue'g) {x}].

1 Note that an additional arbitrary fixed energy £j could be added to £’ by using r/rog = exp{—(E" + Ep)] afier
sefting rp = ropexp £j.
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where a normalized rate F = r/rg = exp(—E") and a normalized time v = rot has been
used. The decay is then governed by the generating initial distribution function ag(F) with
F ranging between zero and one, normalized to fol ap(F)di = 1. Note that the transform
ap(F} — x(t) comesponds to the Laplace transformi. Therefore, the inverse transform
x(1) = ap(F} might be mathematically involved.

(iii) In reality, probably a combination of (i} and (i1} occurs, which cannot be treated
easily in closed form.

As mentioned by Kuhlmann [26] in 1947, an important fact is that, from knowledge of
decay curves of only one macroscopic observable x{¢) alone, it is impossible to discriminate
between these various possibilities.

2.2. An elementary initial distribution results in a closed form

Probably the most elementary form for a stochastic distribution is an exponential distribution
Jo(E") o exp(—E/E) corresponding to the assumption of a random distribution of
activation energies E in the limit of a continuous Poissonian with mean value E. This
assumption seems rather artificial, but it could be considered as a limiting case, and it
will interpret many of the observed features. This distribution has the advantage of being
governed by only one parameter b = T/E and the resulting decay function can be evaluated
in closed form. Using the normalized notation £' = E/T equation (1) yields for the
normalized decay function g(b, ) an integral over a time-dependent distribution f(E’, 1)
as a function of the normalized time T = rot

g(b, 1) = f F(E', T AE' @
E'=0

FIE'T) = folE') expl— exp(—E')r] @)

folE) = bexp(—bE') = (T/E) exp(—E/E). )

This normalized initial distribution fo(E") = bexp(—~bE") is characterized by the ratio
E/T = 1/b. Every fraction between E' and E’ + dE' decays independently with its
characteristic rate 7(E"} = exp(—E").

To evaluate the resulting decay in closed form, it is convenient to transform to {1)
with —E’ = In 7, with the details given in appendix A. The resulting form for the decay
consists of a product of b with the power law t™% and with an integral known as the
incomplete gamma function y (b, ) = Or sP~'e~s ds [32), which is incorporated in computer
libraries {33]

g, ) =br" fo st7le™ ds = b0y (b, 7). (5)

The single parameter & = 7'/ E determines the type of decay: nearly logarithmic for & < 1,
but with the cormrect values one and zero for ¢t = 0 and ¢ — co, respectively, then for
intermediate values of b close to power law, but starting at one, and approximating an
exponential behaviour for b 3> 1. Figure 1 displays these functions in a linear plot in order
to show both the initial and limiting behaviour, and figures 2 and 3 plot the functions in
various ways in order to show the similarities to simpler functions.

In the next section a variation of the initial distribution will be introduced which affects
the short-time behaviour. An example for varying the long-time behaviour will be described
in the following paper, where a Kohlrausch form is approximated by a distribution which
has a Gaussian form at an intermediate time,

t Equation {1) corresponds to the Laplace transform $(p) = [°exp(—pt)y(}dt for x(r) — F{p) and
ag(F) — y(t) with y(t > 1) =0,
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Figure 1. Normalized decay function g(b. 7) = )_( (t)/ Xp against normalized time t = rgf with
global rate ro, displayed for the values & = £T/E (from top) 0.01, 0.03, 0.1, 03, 1, 3, 10. The

broken curve corresponds to exp(—z).
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Figure 2. Decay function g(b.7} for & = 001,

.03, 0.1, 0.3. (@) g(b, T) against Int; (b) derivative
~dg/d{In ) against Int; (¢} regions close the power
law ¢ o t~% are shown in a In-In plot: Ing(d, )
against Inz.
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Figure 3. Similar to figure 2, but for & values (a), ()
b =1, 3, 10 and (broken curve) exp(—rt); except (¢)
regions close to exponential exp(—<) are shown in a
In-linear plot 1o g(b, t} against ¢ for b =1, 3, 10, 30,
and (broken curve) exp(—1).

2.3. Variation of the initial distribution for short times

In figure 4 the function f/b is shown for different times 7. Clearly, there is a peak at
E;,eak(r) = in(z/B) for T/b > 1, thus E;eak(f) increases with the logarithm of the time 7.

This indicates that the EDM could also easily interpret initial conditions starting at 7* = 0
with a distribution exhibiting a peak at a finite energy Eg_p., (v* = 0} = In(ti/b), to be
fixed by the parameters b = 1/E’ and a fictive initial time %, or E{;_Peak- This new
normalized decay function 2@ (b, 1 T*) starts at the new time % = 0 with 7 = T* + T
by defining the two-parameter decay function g of the EDM:
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Figure 4. Disuibution function f(E', v)/b against £/ = £/T of (3) for b = 0,1, displayed
at the normalized times z = 0, 0.1, 1, 10, 100. Inset; z = 107, 10%, 106, 10%, 10", Note that
the distribution decays rapidly for small values of £’ resulting in a peak at E;»euk which moves
to higher energies, thus the average energy of the distribution f(E’, r} increases in time. The
integral of these curves correspond to the decay function g(&, t).

b,r=1"+1,)
Db, 13 1) = 8B, Eg_peai ) = & -
& " ¢ O-pesk g, Ti)lro=0

(6}
Only the short-time behaviour is strongly affected by this variation of the initial condition,

2.4. Universal distributions for larger times

The shapes of f/b in figure 4 for different times seem to be the same, only with decreasing
amplitudes. Indeed, this behaviour is found for /b > 1 by shifting the E” axis for f(E', 1)
of (3), using E" = E'~ E_,, resulting in an integral over a function #(b, £") independent
of 7, scaled by a factor (v/b)~%, and starting at —E} o (7) = —In(z /b):

gb, 1) = (T/b)"b f‘” ulb, ENAE" t/h>1 N
—~In{r/b)
(b, EN = bexp{—b[E” + Cxp(—E”)]}. 8)

Note that the resulting functions u(b, E”) of (8), as shown in figure 5, are shifted
logarithmically in time along the E’ axis, while their magnitude is decreases according
to the power law (z/b)™? for t/b > 1. However, their shape is universal for a fixed value
of b (see the inset of figure 4). Moreover, figure 5 shows that u(b, E”) drops rapidly on
the left-hand side such that, for long enough times z/b > 1, the integral in (7) is nearly
constant, resulting in g(b, T) « (z/b)~?, which contains a regime close to & —bInt for
& « 1, but also includes appropriate “crossover’ regions.

Furthermore, figure 4 indicates that despite the extreme assumption of a wide non-
interacting distribution, at each time a ‘characteristic' energy of the order of E;eak(r) =
Int/b could be determined, which will be the relevant energy for the decay around that
time T since, to a good approximation, the activation at smaller energies is already decayed
and the activation at much higher energies has not started to decay.

Since most existing models [11,15-20] are based on the selection of a single
‘characteristic’ energy increasing in time, thus increasing with decreasing observable x,
in the next section we treat the EDM accordingly.
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Figure 5. Distribution function u (b, £7) of (8) against £ = £'— E!  forb=0.1, 0.25, 0.5,

peak
1, corresponding to f(b, ) for t /b > 1, but shifted by E;cuk = In(z/8).

2.5. The EDM interpreted by a single variable energy Ugy

Although the EDM has been constructed by a distribution of energies, E, constant in time,
it could also be considered as governed by a single but variable energy Ugg{x) given as
a function of the normalized observable x. Since the EDM has the advantage of yielding
a closed form for x(t) = g(b, 1), see (5), the derivative can also be expressed in closed
form:

dg . b exp(—1)
g = Seit(8) = gren(g) = — (1 20) g(1) 9
where § = 5/ro and 7 = r/rg are defined for derivatives with respect to © = roz instead of
t. These effective energies can be evaluated with r as an implicit variable:

U(r) f(r) exp(—f)
T T [g(r)]__ln[ (1_ 8(7) )] o

and obviouslyt Uls’ = UL + In(1/g).
These functlons w:ll be displayed and discussed in the next section.

3. Comparison of the EDM with other models

3.1. Connecting dg/dr of the EDM with I-V curves in superconductors

Before discussing the functions related to dg/dr, such as S and U 9 it seems helpful to

point to a further interpretation of 5., although it can only be applied to superconductors. In
a superconductor subjected to a step in the applied magnetic field, the decaying normalized
observable x(r} might be the excess magnetization which is proportional to the normalized
shielding current density J = J/J, = x. Therefore, the decay x(r) might be related by

dx - ~ ~
-5 = Fer(x) = xFer(x) x E(J) = Jp(J) (11)

t Note that, as already mentioned, some microscopic models [11, 15-20] relate rather the normalized slope
Sep(x) = —dx/dt = —(1/Xy)dX fdr instead of the rare rcf;(x) = {1/x} sex{x) t0 a thermally activated normalized
energy Ule = Uenr/T by assuming ser(x) oc exp[-U E (x)] instead of the previous regr(x} & exp[— Ue'f; )]
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9 6 0 =% 0
Ing Ing

Figure 6. The EDM functions of (11), Left: s = %a(g). Right: r = Fenr(g) against decay value
2. Both are linear (top) and In-in (bottom} plots for the values 0.1, 0.3, 1, 3, 10 of the parameter
b.

with measurements of /-V cument-voltage characteristics which yield the electric field
E(J) and the resistivity p(f) as a function of an externally driven normalized current
density J = g when interpreted by the normalized g of the EDM.

In figure 6 the EDM functions Seg(g) (left) and Fer(g) (right) are displayed both in linear
(top) and log-log (bottom) plots for the values 0.1, 0.3, 1, 3, 10 of the parameter b which
determines the shape,

3.2. A peculiar phase rransition typical for a spin glass

Exciuding J ~ 1, the EDM result for g(b, ) is weil approximated by a power law o 17,
yielding g o g% with an exponent 8 = 1/b + 1, and Feyr o g{1/#) = g!&/7), Therefore, in
terms of I-V characteristics, the limiting resistivity pim = limj_o[E(J)/J] is zero for all
values of b, except for & — oo corresponding to T — T

The EDM, combined with a temperature dependence of E(T)/T = 1/b established for
superconductors, predicts zero limiting resistivity for ali temperatures below T;. However,
for T > Tp=; a very small J < 1 creates a rather large resistivity, because the limiting
slope [dp/dJ];, ;..o s infinite. A peculiar phase transition occurs at Tyay: the limiting
slope [dp/df lim 7o Undergoes a sharp transition from infinity to zero, see figure 6 (top
right). This continuous sharp transition is rounded by non-zero current density J > 0. For
small J there is a ‘crossover’ type of transition between measurable to negligible resistance
around the value 1/b = E/T =2 1, dependent upon the value chosen for that small I
see again figure 6 (top right). Hence this peculiar phase transition of a siope, rounded by
non-zero currents, is similar to the cusp-type feature of the susceptibility of a metallic spin
glass, with the cusp rounded by non-zero magnetic fields.

3.3. Comparing the resistivity of the EDM with the scaling theory

The peculiar phase transition at Tp=; of the resistivity of the EDM has qualitatively many
features of the continuous-vortex—glass phase transition at the finite temperature T,; in
superconductors, as reviewed by Huse and co-workers [34] based on scaling theory (ST),
although they differ quantitatively.

The linear resistivity of the ST, which undergoes a sharp transition to zero, is defined
as the limit g = limy_o{E/J}. While the ST discriminates between ‘linear’ and ‘non-
linear” resistivity p = E/J, the EDM uses only p(J) = E/J, which implies the non-linear
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resistivity below 7y, of the ST. Both models predict a2 power law for p(J) around the phase
ransition for finite J > 0. In both models a sharp phase transition occurs only in the
limit of vanishing current density J — 0. In the ST the limiting resistivity changes from a
finite value to zero. In the EDM the limiting resistivity remains zero, but the limiting slope
{do/dJJiim r—0 changes from oo to zero. {Note that the [imiting slope of the non-linear
resistivity of the ST is also zero below T,g.) For finite current density J > O the resistivity
changes strongly around the tramsition temperature to very small values but remains, in
principle, finite below the transition in both models.

Whereas the ST uses the scaling ansatz together with at least pinning at random positions
or, according to Nattermann [15], also ‘pinning at arbitrary high energy barriers’, the EDM
only assumes a distribution of pinning energies combined with an established temperature
dependence of the mean pinning energy E(T), which is already sufficient to include
indirectly a peculiar phase transition of the spin glass type.

3.4. Comparing Uy of the EDM with other theories

Returning to the general case, which includes spin glasses, the effective activation energies
U (g) (left) and U'S) (g) (right) are displayed in figure 7 in linear—linear (top), linear-Usg—
In g (centre) and In~In (botiom) plots for the parameter values » = .01, 0.03,0.1,0.3, 1, 3.

The linear—linear plot of figure 7 (top left) shows that U'Y approximates the Anderson
function o 1 — J for b — 0. Furthermore, the linear- Is—Ing plots of figure 7 (centre)
indicate that these functions are close to o &In{l/g) with §; = 1/b+ 1 and §, = 1/b for
U’ and U7, respectively, as evaluated with the approximation g o v, with deviations
visible around g A~ 1. Therefore, the In-In plots of Ul,(g) in figure 7 (bottom) show
curves with continuously changing slopes. Thus if U7[;(g) is interpreted by a power law
& (1/7)*, as proposed by various authors [15, 16, 18], a continuous ‘crossover’ of the value
of » would result, although a fit with a power law would look reasonable within smaller
intervals of J. However, the EDM coincides with the exact solution Ueg = UpIn(1/ J } found
by Blatter [17,21] when the vortex motion is controlled by intrinsic pinning in a layered
system for a field parallel to the layers. This logarithmic dependence has been applied to
find an exact solution for flux creep in a slab by Vinokur and co-workers [22].
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3.5. Comparing the EDM with decay forms of other models

How well do the decay curves g(b, 1), proposed by the EDM, describe decay curves proposed
by other models? Note that there is only one parameter, b, that determines the shape. For
the prediction of logarithmic decay this could be tested in figures 2(a) and () where In-
linear plots and plots of the derivatives with respect to Int are shown. Clearly, this is the
case for small values of b.

The prediction of a power law can be tested in figure 2(¢c). It is indicated by nearly
straight lines in the log-log plot for a wide range of values of &.

3.6, Comparison of the EDM with the Sherrington—Kirkpatrick model

Fisher and co-workers [11] have performed Monte Carlo simulations of the Sherrington—
Kirkpatrick (SK) model in order to estimate the dynamic exponent & of their scaling
hypothesis go(t) & (In#)~* valid for large times ¢, Indeed, their simulation data [11] plotted
in a log gy against log(logt) plot, see figure 8, show a constant value for the exponent «
for large ¢, as predicted.

3 10 100 1000
Q4:‘\\‘ o
02ke N
9o \E\u\;\\
oA R -
X009 \ﬂ‘
Qos- 3*%‘\ 1 Figure 8. Monte Carlo simulation of [11] of the Sherrington-Kirkpatrick
'3\\_& model; time dependence of the remanent magnetization m{r) = go(t) for
oo2k \Q' N spins (N = 50, 160, 312 for squares, triangles, circles, respectively),
o5 . : ‘3 Broken curve; exponent g = 1.75 of g0 o (Ins)™*. Full curve:
Tog,, ¢ Xog(h, ror) of the EDM with Xo =0.707, b = 0,43, rp =06.1.

When the same data are fitted by the EDM based on the hypothesis of an independently
decaying Poissonian initial distribution of activation energies, the resulting curved function
of figure 8 fits well the data points of the simulation of the SK model [11) in the whole time
interval,

4. Concluding remarks

In summary, the ‘elementary decay model’ (EDM) presented here has been constructed to
interpret non-exponential decay regimes observed in spin glasses and superconductors by
an elementary stochastic assumption for an initial distribution of activation energies. The
resulting decay functions are expressed in closed form and cover the entire decay from
the starting value to the final value of the observable without the need to define ‘epochs’
connected by ‘crossover’ regions. Furthermore, the magnitude of the ratio E/T of the
initial distribution governs the type of decay, ranging continuously from exponential over
power to Jogarithmic law without the need to define ‘changeover’ regimes between these
specific decay forms.

The main result of the application of the EDM to measurements as described in the
following paper is the fact that the elementary hypothesis of a stochastic initial distribution
is sufficient to interpret a large variety of data when established temperature dependencies
for E(T) are used.
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Appendix. Evaluation of the closed form of the EDm

The expenential initial distribution fp(E") dE” = bexp(—-bE)dE’ of (2) with the notation
b= T/E and E' = E/T is transformed to the form of (5) by the relation —E' = In¥F
yielding ao(F)df = —bF®~12d¥ where F = r/rg. The resulting decay x(z) = g(b, ) is
then a function of & and the normalized time v = rof. For & = 1 the integral in (1) has
the solution g(1, 1) = [1 — exp(—1)]/7. For (b 5 1) this form has the advantage that the
integral in (1) can either be solved when transformed into a series of integrable termsf

1 oo 1 w(bh—
—1)RrH (b—1+nm)

2(b,T) = b f FODexp(—Fr)dF = b)) f EVPTTT A

0 r=0v0

n!
o0
(=1)ng”
=b) —— A2
; (& + n)n! (A2)
or the integral can be transformed by the substitution s = ¥t into a product of &

with the power law t™° and with an integral known as the incomplete gamma function
y(b, 1) = [ st~le ™5 ds [32]

T
g(b,r)=br"bfo sPle ds = bty (b, 1), (A3)
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