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Abstract. The motivation of this work is to search for an elementary common physical 
mechanism for the non-exponential decay observed in a large number of disparate phenomena. 
Probably the most elementary assumption is an initial Poissonian distribution of activation 
energies E with each fraction decaying independently according to an Arrhenius rate r (E)  - 
exp(-E/T). Despite this drastic oversimplification. this elementary model will account for a 
large variety of observed shapes of decay, ranging from nearly exponential to power law and 
nearly logarithmic functions. The fundamental feature that governs the shape is the ratio t/T. 
denoted I /b ,  of the mean at temperature T. Analysing limited experimental data sets is also 
easy due to the closed form of the resulting normalized decay curves gtb. T) = b r b y ( b .  7). 
where I = rot is the time f normalized by the m e  rg. The incomplete gamma function 
y(b,  r )  = J,' sb-te-sds is an important correction of the power law T C ~ ,  

In an alternative interpretation, this decay form g(b, I) could also be considered as generated 
by a &dependent form of an effective banier energy (I.&) increasing 3s a function of the 
decaying normalized observable g. 

In this paper the forms g(b. T) and Uc&) are evaluated. displayed and compared with 
existing models. In a separate paper the widespread applicability of the form g(b, T) will 
be demonsmted by interpreting various types of measured data using individual established 
temperature dependencies and by treating the 'ageing' or 'memory' effect. 

1. Introduction 

1.1. Measured decay in disordered materials 

Non-exponential thermal relaxation of a non-equilibrium macroscopic observable X ( t )  [l- 
91 is a widespread phenomenon in materials exhibiting some kind of disorder. Although 
the microscopic effects are very different and dependent upon the type of material, it is 
an intriguing fact that the decay curves are quite similar, and include decays close to 
exponential, power or logarithmic laws. Explaining the microscopic-scale physics [1@'24] 
responsible for these experimental decay functions is a very complex task. Although there 
are some similarities, these theories have to treat in detail the specific effects for each 
material. 

1.2. Generalizing models: the problem of temperature dependence 

It is the aim of this paper to find a generalized model for non-exponential decay based on 
elementary physics. 

At first glance, the temperature dependence should be part of every decay model. 
However, the temperature variation of non-exponential decay is different for granular 
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superconductors, for metallic spin glasses, for the magnetic after-effect in alloys, and for 
the plastic elongation of a stretched copper wire. 

In order to separate general from individual behaviour, a two-step procedure has been 
used. In a first step, generalized models interpret only single decay curves measured at 
a fixed temperature. In a second step, the individuality of the specific material will be 
considered. Already established temperature dependencies are incorporated for the specific 
material under investigation. 

1.3. Early models using generating functions 

In principle, non-exponential decay functions x ( t )  are uniquely defined by two 
complementary generating functions: (i) a single effective rate re&) varying with the 
decaying observable x ,  and (ii) an initial distribution uo(r) of relaxation rates r with each 
fraction decaying exponentially with constant rate r .  

As long ago as 1937 Richter 1251 introduced a broad distribution of relaxation rates. The 
resulting decay function is then a superposition of independent relaxations of the Arrhenius 
type. In order to enable a closed form for the resulting decay, he approximated the broad 
distribution by a box-type distribution. This model was applied to non-exponential decay 
of the magnetic after-effect. 

In 1947 Kuhlmann [26] mentioned that the complementary method (i) of a single 
generating effective rate could also be used to describe non-exponential decay. 

In 1948 Smith [27] explained the plastic elongation of stretched metals by assuming 
a flat distribution of activation energies. The resulting nearly logarithmic decay is again 
expressed in a closed form. 

In 1989, Bourrous and Kronmiiller 1281 found a barrier distribution by fitting 
experimental data. For practical reasons. the number of fitting parameters (in principle 
infinite) was reduced by assuming an asymmetric Gaussian distribution. This model was 
applied to the magnetic after-effect in an amorphous alloy. 

In 1989 Hagen and Griessen [I31 assumed a distribution m ( E * )  of energy E' for the 
pinning barriers in high-T, superconductors. At that time, only the nearly logarithmic 
longtime fraction of the decay was well registered, which made it difficult to directly 
determine the distribution m(E*)  from a measurement at fixed T .  Instead, these authors 
used an established temperature dependence for E ( T )  together with the full temperature 
dependence of the decay at long times and found by an inversion scheme the distribution 
m(E*).  

In 1993 Theuss [29] compared. for the same data of layered type-II superconductors, the 
inversion scheme of Hagen and Griessen [I31 with the modified method of Bourrous and 
Kronmiiller [28]. The distribution is approximated by many box-type distributions, using 
the integral evaluated by Richter [25] for each box. In addition, the data at four different 
temperatures were combined for the determination of one distribution. 

1.4. Proposing an elementary initial distribution 

Although the papers described in the previous section show that non-exponential decay 
can be related to an underlying distribution function, there are two problems. First, the 
evaluation of this function for limited experimental data is difficult due to the, in  principle 
infinite, number of fitting parameters. Second, the distribution found by inversion is a 
very helpful type of presentution of the observed data rather than their interpretation or 
explanation. Therefore, it is advisable to expand the generating method from the formal 
box-type of Richter I251 to distributions based on elementary stochastic arguments in order 
to suggest an explanation of the data. 
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The simplest approach of a Poissonian distribution was able to interpret a large number 
of decay data with only a small number of fitting parameters. Only in the cases of bad 
fits is the distribution modified, again using a physical argument that the low-energy part 
has already decayed at the ‘initial’ time of the decay. Such distributions coincide with the 
results of Hagen and Griessen [I31 found by inversion. Such an ‘elementary decay model’ 
(EDM) was sketched [30] in 1991 and will he presented here in more detail. 

The decay functions of the EDM will then be compared with predictions [ 10-231 of other 
models and with a Monte Carlo simulation [ 1 I ]  of the Sherrington-Kirkpatrick model. 

In the following paper, the EDM will be applied to various experiments. An important 
application is the description of the ‘ageing’ or ‘memory’ effect. A discussion will show 
that the ageing effect is a consequence of specific decay curves, and not directly related to 
spin glass behaviour. 

2. Introducing the ‘elementary decay model’ (EDM) 

2.1. Generalizing therm1 acrivation 

It seems sufficient to consider only the decay after a sudden change of an external parameter 
since the response to a continuous change has been described elsewhere [30]. 

Suppose the non-equilibrium observable X ( t )  starts after a step of an external parameter 
occurring at t = 0 with the initial value XO. Describing by X(t) only the non-equilibrium 
part, X ( t )  will decay to zero. Thus the normalized decay function x(r )  = X ( t ) / X o  starts 
at one and decays to zero. 

The main common feature of the decay in the large variety of disordered materials 
is that the decay X ( t )  at a fixed temperature T is caused by thermal activation of 
energy E .  The basic assumption is, therefore, an Arrhenius type of the decay rate 
r(E‘) = -(l/X)dX/dt = -(l/x)dx/dt proportional to exp(-E’) where E‘ = E / T  is 
the normalized activation energy. Three possible interpretations of non-exponential decay 
will be considered. 

(i) The energy E‘ is assumed to change during the process of relaxation, to be described 
by E’(t)  or, implicitly, by an effective activation energy U:&) as a function of the 
normalized decaying observable x ,  with re&) a exp[-U$’(x)]t . This description implies 
a uniform behaviour over the sample. 

Although the transform x ( t )  re&) is straightforward, the inverse transform 
 re^ -+ f(x) -+ x ( t )  cannot always be performed in closed form. 

(ii) A non-uniform behaviour would result in adistribution f ( E ’ )  of energies E‘ = E / T .  
If these energies E‘ are constant during the process of relaxation, the superposition of the 
resulting exponential decay functions would already yield non-exponential decay functions, 
without the need to assume that these energies are of the changing U&(x) type, as 
demonstrated by various authors [13.25,27-291, and also discussed by Palmer and co- 
workers [31]. In the limit of a continuous rate r = ro exp(-E‘) with the maximal value ro 
for E’ = O$ the decay x ( t )  is expressed as [31] 

ao(i)exp(-ir)dF (1)  

t Note thal some microscopic models Il l .  15-20] relate rather the normalized slope sc&) = -dr/dt = 
-(l/XddX/dI insteadoftherater.rr(x) = ( I / x ) s . t ( x )  toathermallyactivated normalizedenergy = U.t /T  
by assuming s d x )  n exp[-U~$)(x)l instead of the previous re&) a exp[-U$’(x)l. 
$ Note that an additional arbitmy fixed energ). EA could be added to E‘ by using r / r m  = exp[-(E‘+ Eh)] afler 
setting rg = rmexp Eh. 
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where a normalized rate i = r / ro  = exp(-E') and a normalized time r = rot has been 
used. The decay is then governed by the generating initial distribution function aoQ) with 
? ranging between zero and one, normalized to Jd ao(F)di = 1. Note that the transform 
ao(F) + x ( t )  corresponds to the Laplace transformt. Therefore, the inverse transform 
x ( t )  -+ ao(i) might be mathematically involved. 

(iii) In reality, probably a combination of (i) and (ii) occurs, which cannot be treated 
easily in closed form. 

As mentioned by Kuhlmann [26] in 1947, an important fact is that, from knowledge of 
decay curves of only one macroscopic observable X ( I )  alone, it is impossible to discriminate 
between these various possibilities. 

2.2. An elementary initial distribution results in a closed form 
Probably the most elementary form for a stochastic distribution is an exponential distribution 
fo (E ' )  o( exp(-E/E) corresponding to the assumption of a random distribution of 
activation energies E in the limit of a continuous Poissonian with mean value E. This 
assumption seems rather artificial. bur it could be considered as a limiting case, and it 
will interpret many of the observed features. This distribution has the advantage of being 
governed by only one parameter b = T / E  and the resulting decay function can be evaluated 
in closed form. Using the normalized notation E' = E / T  equation (1) yields for the 
normalized decay function g(b, r )  an integral over a time-dependent distribution f(E'. 7) 
as a function of the normalized time 7 = rof 

m 
g(b, r )  = f (E ' , r )dE '  (2) 

f ( E ' ,  r )  = fo(E')exp[- exp(-E')t] (3) 
fo(E')  = bexp(-bE') = (T/E) exp(-E/E). (4) 

L O  

This normalized initial distribution fo(E') = bexp(-bE') is characterized by the ratio 
E/T = l/b. Every fraction between E' and E' + dE' decays independently with its 
characteristic rate ?(E') = exp(-E'). 

To evaluate the resulting decay in closed form, it is convenient to transform to (1) 
with -E' = In i ,  with the details given in appendix A. The resulting form for the decay 
consists of a product of b with the power law 7-b and with an integral known as the 
incomplete gamma function y(b, 7) = f sb-'e-$ ds [32], which is incorporated in computer 
libraries [33] 

(5) g(b, r )  = bs-b sb-' e -' ds = bs-by(b, 7). Lr 
The single parameter b = T/E determines the type of decay: nearly logarithmic forb  << 1, 
but with the correct values one and zero for t = 0 and t + CO, respectively, then for 
intermediate values of b close to power law, but starting at one, and approximating an 
exponential behaviour for b >> 1. Figure 1 displays these functions in a linear plot in order 
to show both the initial and limiting behaviour, and figures 2 and 3 plot the functions in 
various ways in order to show the similarities to simpler functions. 

In the next section a variation of the initial distribution will be introduced which affects 
the short-time behaviour. An example for varying the long-time behaviour will be described 
in the following paper, where a Kohlrausch form is approximated by a distribution which 
has a Gaussian form at an intermediate time. 

t Equation (1) corresponds to the Laplace transform j(p) = reexp(-pr)y(r)dz for I ( < )  + y(p) and 
WO) + y(r) wifh y(f > I )  = 0. 
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Figure 1. Normalized decay function g(b. r )  = X ( r ) / X o  against normalired time T = ro1 with 
global rate rg. displayed for the values b = kT/E (from top) 0.01, 0.03. 0.1, 0.3, 1, 3, 10. The 
broken Curve corresponds to exp(-r). 

Figure 2. Decay function g(b. 7 )  for b = 0.01, 
'0.03, 0.1, 0.3. (a) g(b,r)  against lnr;  (b) derivative 
-dg/d(lnr) against Inr; (c) region$ close the power 
law g a vb am shown in a In-In plot: lng(b. r )  
against In T. 

Figure 3. Similar to figure 2, but for b values (a). (b) 
b = 1 ,  3. 10 and (broken curve) exp(-I); except (c )  
regions close to exponential exp(-r) are shown in a 
In-linear plot lng(b. r) against r fo rb  = I ,  3. 10, 30, 
and (broken c u m )  exp(-r). 

2.3. Variation of the initial distribution for short times 

In figure 4 the function f/b is shown for different times t. Clearly, there is a peak at 
EL,(s) = In(r/b) for t / b  

This indicates that the EDM could also easily interpret initial conditions starting at ?* = 0 
with a distribution exhibiting a peak at a finite energy Eb-p*(z* = 0) = ln(qo/b), to be 
fixed by the parameters b = l / E  and a fictive initial time qn or EA-@. This new 
normalized decay function g")(b. ti.; 5') starts at the new time t' = 0 with r = ?* + tin 

by defining the two-parameter decay function g(') of the EDM: 

1, thus Eka(r)  increases with the logarithm of the time 5. 
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Figure 4. Distribution funclion f(E'. r)/b against E' = E / T  of (3) for b = 0.1, displayed 
at the normalized times r = 0. 0.1, 1, IO, 100. Inset: I = LO'. IO4, Id. IO8, IO". Note that 
the distribution decays rapidly for small values of E' resulting in a p e t  at EL which moves 
lo higher energies, thus the merage energy of the distribution f (E' ,  r )  increases in time. The 
integral of these curves correspond to lhe decay function g(b. T). 

Only the short-time behaviour is strongly affected by this variation of the initial condition. 

2.4. Universal distributions for larger rimes 

The shapes of f j b  in figure 4 for different times seem to be the same, only with decreasing 
amplitudes. Indeed, this behaviour is found for r j b  > 1 by shifting the E' axis for f ( E ' ,  5 )  

of (3). using E" = E'- ELak, resulting in an integral over a function u(b ,  E") independent 
of 5, scaled by a factor (r/b)-b. and starting at -E;&(r) = -ln(r/b): 

m 

g(b, r )  = (r/b)-b/ u(b, E")dE" r j b  > 1 (7) 
-In(rlb) 

u(b ,  E") = bexp{-b[E"+exp(-E")]). (8) 

Note that the resulting functions u(b, E") of (8), as shown in figure 5, are shifted 
logarithmically in time along the E' axis, while their magnitude is decreases according 
to the power law (rjb)-b for s jb  > 1. However, their shape is universal for a fixed value 
of b (see the inset of figure 4). Moreover, figure 5 shows that u(b, E") drops rapidly on 
the left-hand side such that, for long enough times r / b  >> 1, the integral in (7) is nearly 
constant. resulting in g(b, t) a (rjb)-b, which contains a regime close to a - b h s  for 
b << 1, but also includes appropriate 'crossover' regions. 

Furthermore, figure 4 indicates that despite the extreme assumption of a wide non- 
interacting distribution, at each time a 'characteristic' energy of the order of E&?) = 
l n r f b  could be determined, which will be the relevant energy for the decay around that 
time t since, to a good approximation, the activation at smaller energies is already decayed 
and the activation at much higher energies has not started to decay. 

Since most existing models [ l l ,  15-20] are based on the selection of a single 
'characteristic' energy increasing in time, thus increasing with decreasing observable x ,  
in the next section we treat the EDM accordingly. 
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Figum 5. Distribution function u(b. E") of (8) against E" = E' -  E&3k forb = 0.1. 0.25, 0.5, 
I. corresponding to f ( b ,  r )  for r/b > 1, but shifted by E;& = ln(r/b). 

2.5. The EDM interpreted by a single variable energy 

Although the EDM has been constructed by a distribution of energies, E ,  constant in time, 
it could also be considered as governed by a single but variable energy Ue&) given as 
a function of the normalized observable x .  Since the EDM has the advantage of yielding 
a closed form for x(7) = g(b. 7). see (3, the derivative can also be expressed in closed 
form: 

where 5 = s/ro and i: = r/rO are defined for derivatives with respect to 7 = rot instead of 
t .  These effective energies can be evaluated with t as an implicit variable: 

and obviouslyt U$) = U:;' f ln(l/g). 
These functions will be displayed and discussed in the next section. 

3. Comparison of the EDM with other models 

3.1. Connecting dg/ds of the EDM with I-V curves in superconductors 

Before discussing the functions related to dg/ds, such as ief and U$', it seems helpful to 
point to a further interpretation of &ff, although it can only be applied to superconductors. In 
a superconductor subjected to a step in the applied magnetic field, the decaying normalized 
observable x ( t )  might be the excess magnetization which is proportional to the normalized 
shielding current density .f = J / J ,  = x .  Therefore, the decay x(7) might be related by 

br 
d7 

_ _ =  Seff(x) = xi,,(x) c( E ( j )  = j,Q) (11) 

t Note that, as already mentioned, some microscopic models I l l ,  15-20] relate rather the normalized slope 
se&) = -dx/dt = -(l/Xo) dX/dt instead of the rater.r(x) = (l/x)s&) to a thermally activated normalized 
energy U:, = U,n/T by assuming s d x )  c( exp[-U:k)(x)] instead of the previous r&) a exp[-U~~'(.r)]. 
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Figure 6. The EDM funclions of (11). L e f t  s =&a(g). Right: r = h ( g )  against decay value 
8 ,  Both are linear (top) and In-In (bottom) plots lor the values 0.1.0.3, 1. 3. 10 ofthe panmeter 
b. 

with measurements of I-V current-voltage characteristics which yield the electric field 
E ( f )  and the resistivity p ( j )  as a function of an externally driven normalized current 
density .f = g when interpreted by the normalized g of the EDM. 

In figure 6 the EDM functions f&) (left) and fee&) (right) are displayed both in linear 
(top) and log-log (bottom) plots for the values 0.1, 0.3. 1, 3, 10 of the parameter b which 
determines the shape. 

3.2. A peculiar phase transiiion typical for a spin glass 

Excluding j k 1, the EDM result for g(b, I )  is well approximated by apower  law a Cb, 
yielding &E cx gs with an exponent 6 = l/b + 1, and F,ff cx g"'b' = g'E/'). Therefore, in 
terms of I-V characteristics, the Iimiting resistiviry psm = limj-,,,[E(~)/~] is zero for all 
values of b, except for b +. 03 corresponding to T + T,. 

The EDM, combined with a temperature dependence of & T ) / T  = 1/6 established for 
superconductors, predicts zero limiting resistivity for all temperatures below T,. However, 
for T > Tb, a very small J << 1 creates a rather large resistivity, because the limiting 
slope [dp/dJ]limj,O is infinite. A peculiar phase transition occurs at rb=,: the limiring 
slope [dp/dJ]li,j,o undergoes a sharp transition from infinity to zero, see figure 6 (top 
right). This continuous sharp transition is rounded by non-zero current density j > 0. For 
small j there is a 'crossover' type of transition between measurable to negligible resistance 
around the value l/b = i?/T c 1. dependent upon the value chosen for that small j; 
see again figure 6 (top right). Hence this peculiar phase transition of a slope, rounded by 
non-zero currents, is similar to the cusp-type feature of the susceptibility of a metallic spin 
glass, with the cusp rounded by non-zero magnetic fields. 

3.3. Comparing the resistiviry of the EDM with the scaling theory 

The peculiar phase transition at Tb=l of the resistivity of the EDM has qualitatively many 
features of the continuous-vortex-glass phase transition at the finite temperature Tvg in 
superconductors, as reviewed by Huse and co-workers [34] based on scaling theory (ST), 
although they differ quantitatively. 

The linear resistivity of the ST, which undergoes a sharp transition to zero, is defined 
as the limit p~ = lim,,o[E/J]. While the ST discriminates between 'linear' and 'non- 
linear' resistivity p = E / J ,  the EDM uses only p ( J )  = E I J ,  which implies the non-linear 
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Figure 7. Effective normalized energies U& = 
U$ f T (lek?). and ULii (right) against decay value 
8 in linear-linear (top), linear-In (centre) and In-In 
(bottom) plots far the values 0.01, 0.03, 0.1. 0.3, I ,  
3 of the parameter b. 

resistivity below TvE of the ST. Both models predict a power law for p ( J )  around the phase 
transition for finite J > 0. In both models a sharp phase transition occurs only in the 
limit of vanishing current density J -+ 0. In the ST the limiting resistivity changes from a 
finite value to zero. In the EDM the limiting resistivity remains zero, but the limiting slope 
[dp/dJ]h,+o changes from CO to zero. (Note that the limiting slope of the non-linex 
resistivity of the ST is also zero below TVEJ For finite current density J > 0 the resistivity 
changes strongly around the transition temperature to very small values but remains, in 
principle, finite below the transition in both models. 

Whereas the ST uses the scaling ansatz together with at least pinning at random positions 
or, according to Nattermann [ E ] ,  also ‘pinning at arbitrary high energy barriers’, the EDM 
only assumes a distribution of pinning energies combined with an established temperature 
dependence of the mean pinning energy E ( T ) ,  which is already sufficient to include 
indirectly a peculiar phase transition of the spin glass type. 

3.4. Comparing U, of the EDM with other theories 

Returning to the general case, which includes spin glasses, the effective activation energies 
U z ) ( g )  (left) and U:$(g) (right) are displayed in figure 7 in l i n e d i n e a r  (top), linear-U,r 
In g (centre) and In-ln (bottom) plots for the parameter values b = 0.01,0.03,0.1,0.3, 1,3.  

The linear-linear plot of figure 7 (top left) shows that U:$) approximates the Anderson 
function ci 1 - j for b -+ 0. Furthermore, the 1inear-U:fflng plots of figure 7 (centre) 
indicate that these functions are close to a 6 In(l/g) with 8, = l / b  + 1 and 6, = l / b  for 
U’($) and U’(‘), respectively, as evaluated with the approximation g o( r-’, with deviations 
visible around g X 1. Therefore, the In-In plots of U:&) in figure 7 (bottom) show 
curves with continuously changing slopes. Thus if U&&) is interpreted by a power law 
a ( l / j )* ,  as proposed by various authors [IS, 16,181, acontinuous ‘crossover’ of the value 
of fi  would result. although a f i t  with a power law would look reasonable within smaller 
intervals of j .  However, the EDM coincides with the exact solution Uea = Uoln( l / j )  found 
by Blatter [17,21] when the vortex motion is controlled by intrinsic pinning in a layered 
system for a field parallel to the layers. This logarithmic dependence has been applied to 
find an exact solution for flux creep in a slab by Vinokur and co-workers 1221. 
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3.5. Comparing the EDM with decay forms of other models 

How well do the decay curves g(b, 7 ) ,  proposed by the EDM. describe decay curves proposed 
by other models? Note that there is only one parameter, b, that determines the shape. For 
the prediction of logarithmic decay this could be tested in figures 2(a) and (b) where In- 
linear plots and plots of the derivatives with respect to In 7 are shown. Clearly, this is the 
case for small values of b. 

The prediction of a power law can be tested in figure 2(c). It is indicated by nearly 
straight lines in the log-log plot for a wide range of values of b. 

3.6. Comparison of the EDM with the Sherrington-Kirkpatrick model 

Fisher and co-workers [ 111 have performed Monte Carlo simulations of the Sherrington- 
Kirkpatrick (SK) model in order to estimate the dynamic exponent o[ of their scaling 
hypothesis q&) ci (Int)-" valid for large times t .  Indeed, their simulation data [ l  11 plotted 
in a logqo against logflogt) plot, see figure 8,  show a constant value for the exponent 01 

for large t ,  as predicted. 

t 
3 io KXI moo 

Figure 8. Monte Carlo simulation of [ I  I ]  of Lhe Shcmngton-Kirkpalrick 

RO2 

a5 i 
Xog(b. 701) of the EDM with Xo = 0.707. b = 0.43. '0 = 6.1. 

"10 ' _ _  
When the same data are fitted by the EDM based on the hypothesis of an independently 

decaying Poissonian initial distribution of activation energies, the resulting curved function 
of figure 8 fits well the data points of the simulation of the SK model [ 1 I ]  in the whole time 
interval. 

4. Concluding remarks 

In summary, the 'elementary decay model' (EDM) presented here has been constructed to 
interpret non-exponential decay regimes observed in spin glasses and superconductors by 
an elementary stochastic assumption for an initial distribution of activation energies. The 
resulting decay functions are expressed in closed form and cover the entire decay from 
the starting value to the final value of the observable without the need to define 'epochs' 
connected by 'crossover' regions. Furthermore, the magnitude of the ratio E f T of the 
initial distribution governs the type of decay, ranging continuously from exponential over 
power to logarithmic law without the need to define 'changeover' regimes between these 
specific decay forms. 

The main result of the application of the EDM to measurements as described in  the 
following paper is the fact that the elementary hypothesis of a stochastic initial distribution 
is sufficient to interpret a large variety of data when established temperature dependencies 
for i(T) are used. 
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Appendix. Evaluation of the closed form of the EDM 

The exponential initial distribution fo(E') dE' = bexp(-bE')dE' of (2) with the notation 
b = T/% and E' = E / T  is transformed to the form of ( 5 )  by the relation -E' = In? 
yielding a&)d? = -bi(b-l)df where i = r/ro. The resulting decay X ( T )  = g(b, T) is 
then a function of b and the normalized time r = rot. For b = 1 the integral in (1) has 
the solution g(1, r )  = [l - exp(-r)]/r. For (b # 1) this form has the advantage that the 
integral in (1) can either be solved when transformed into a series of integrable termst 

- ( -1)"t" 
- b C ( b + n ) n !  n=O 

or the integral can be transformed by the substitution s = ?r into a product of b 
with the power law rWb and with an integral known as the incomplete gamma function 
y(b, r )  = 1,' sb-'e-' ds [32] 

g(b, 5 )  = btYb lr ~ b - 1  e -s ds = br-by(b, r )  
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